

1st Brazilian Workshop on Interior Point Methods

27-28 April, 2015 - Campinas, Brazil

An adaptive preconditioner for primal blockangular problems by an interior point method

Silvana Bocanegra and Jordi Castro,

E-mail: <u>silvana@deinfo.ufrpe.br;</u> jordi.castro@upc.edu;

- Problems with block angular structure are common in many applications;
- The efficiency of Interior Point Methods (IPM) depends of the linear system solver used to compute the Newton direction;
- Preconditioned Iterative linear solvers may be more efficient to solve large-scale problems due to storage and time limitations;
- An efficient specialized IPM for primal block-angular problems solved the normal equations in two stages: Cholesky factorizations for the block constraints and a PCG for the linking constraint;

- The preconditioner used in second stage considers a few terms of an infinite power series which provides the inverse of the Schur complement of the normal equations
- The more terms of the power series, the more accurate the preconditioner, at the expense of increasing the running time of each PCG iteration

4

3

tripart1 tripart2

tripart3

tripart4

gridgent

114 119

Is possible to find a number of terms used on each interior point iteration to provides better results?

Instance	$_{k}$	m	n
tripart1	16	3294	33774
tripart2	16	13301	135941
tripart3	20	25541	329161
tripart4	35	38004	869814
gridgen1	320	329831	985191

Outline

- We propose an adaptive scheme for update the number of terms used in the preconditioner at each interior point iteration. This scheme is based on Ritz Values
- Ritz values can thus be used to estimate the spectral radius of a certain matrix in the power series, which measures the efficiency of the preconditioner.
- Preliminary numerical experiments are provide to both multicommodity flows and the minimum congestion problems.

The specialized block-angular IPM

A block angular-problem can be written in this general formulation min $\sum_{i=0}^{k} (c^{i^{T}} x^{i} + x^{i^{T}} Q_{i} x^{i})$ s.t. $\begin{bmatrix} N_{1} & b_{1} & \\ N_{2} & \\ & \ddots & \\ & N_{k} & \\ L_{1} & L_{2} & \dots & L_{k} & I \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{2} \\ \vdots \\ x^{k} \\ x^{0} \end{bmatrix} = \begin{bmatrix} b^{1} \\ b^{2} \\ \vdots \\ b^{k} \\ b^{0} \end{bmatrix}$ $0 \leq x^{i} \leq u^{i} \quad i = 1, \dots, k.$

 One of the most efficient IPMs for block-angular problems solves the normal equations exploiting the block structure

$$A\Theta A^{T} = \begin{bmatrix} N_{1}\Theta_{1}N_{1}^{T} & N_{1}\Theta_{1}L_{1}^{T} \\ & \ddots & \vdots \\ & & N_{k}\Theta_{k}N_{k}^{T} & N_{k}\Theta_{k}L_{k}^{T} \\ & & L_{1}\Theta_{1}N_{1}^{T} & \dots & L_{k}\Theta_{k}N_{k}^{T} & \Theta_{0} + \sum_{i=1}^{k}L_{i}\Theta_{i}L_{i}^{T} \end{bmatrix} \cdot \begin{bmatrix} B & C \\ C^{T} & D \end{bmatrix} \begin{bmatrix} \Delta y_{1} \\ \Delta y_{2} \end{bmatrix} = \begin{bmatrix} g_{1} \\ g_{2} \end{bmatrix}$$

$$7$$

Cholesky + PCG

(COAP 2007)

• **Stage I:** Cholesky factorization for each block :

$$B\Delta y_1 = (g_1 - C\Delta y_2).$$

• **Stage II:** PCG for Linking constrains

$$(D - C^T B^{-1} C) \Delta y_2 = (g_2 - C^T B^{-1} g_1)$$

Power Series Preconditioner:

$$(D - C^T B^{-1} C) \Delta y_2 = (g_2 - C^T B^{-1} g_1)$$

Power series preconditioner: M⁻¹

$$(D - C^{T}B^{-1}C)^{-1} = \left(\sum_{i=0}^{\infty} (D^{-1}(C^{T}B^{-1}C))^{i}\right)D^{-1}$$

$$\begin{array}{rcl} M^{-1} &=& D^{-1} & \text{if } h = 0, \\ M^{-1} &=& (I + D^{-1} (C^T B^{-1} C)) D^{-1} & \text{if } h = 1. \\ M^{-1} &=& (I + D^{-1} (C^T B^{-1} C) + D^{-1} (C^T B^{-1} C)^2) D^{-1} & \text{if } h = 2. \end{array}$$

Power Series Preconditioner:

The effectiveness of this preconditioner depends on the spectral radius of $D^{-1}(C^TB^{-1}C)^{-1}$

which is in [0,1). The farther away from 1, the better is the preconditioner.

A procedure to estimate spectral radius of $D^{-1}(C^T B^{-1}C)^{-1}$ was recently introduced for h = 0.

Proposition 1. Let v be the eigenvector of matrix $I - D^{-1}(C^T B^{-1}C)$ associated with the eigenvalue λ . Then, v is eigenvector of $D^{-1}(C^T B^{-1}C)$ associated to eigenvalue $1 - \lambda$.

Corollary 1. Let $\lambda_{min} \ge 0$ be the minimum eigenvalue of $I - D^{-1}(C^{T-1}B^{-1}C)$. Therefore, the spectral radius of $D^{-1}(C^{T}B^{-1}C)$ is $1 - \lambda_{min}$.

The espectral radius of the preconditioned matrix can be estimated from de solution of the system by PCG using the relation of Lanczos and CG.

The eigenvalues of the tridiagonal matrices

$$T_{k} = \begin{pmatrix} \gamma_{1} & \eta_{2} & & \\ \eta_{2} & \gamma_{2} & \eta_{3} & & \\ & \ddots & \ddots & \ddots & \\ & & \eta_{k-1} & \gamma_{k-1} & \eta_{k} \\ & & & & \eta_{k} & \gamma_{k} \end{pmatrix},$$

k = 1, ..., l, converge to the eigenvalues of the preconditioned matrix of the system solved by PCG as the number of PCG iterations approaches l.

Given
$$x_0$$
, $r_0 = b - Mx_0$, $\rho_0 = r_0$, $k = 1$

while $r_k \neq 0$ and $k < k_{max}$ $\alpha_{k-1} = \left(\frac{\|r_{k-1}\|^2}{(\rho_{k-1}, M\rho_{k-1})}\right)$ $x_k = x_{k-1} + \alpha_{k-1}\rho_{k-1}$ $r_k = r_{k-1} - \alpha_{k-1} M \rho_{k-1}$ $\beta_{k-1} = \left(\frac{\|r_k\|^2}{\|r_{k-1}\|^2}\right)$ $\rho_k = r_k + \beta_{k-1} \rho_{k-1}$ k := k + 1end_while.

 $\gamma_k = rac{1}{lpha_{k-1}} + rac{eta_{k-1}}{lpha_{k-2}},$

$$\beta_0=0, \qquad \alpha_{-1}=0,$$

$$\eta_{k+1} = -rac{\sqrt{eta_k}}{lpha_{k-1}}.$$

13

Extreme eigenvalues of the preconditioned matrix are well approximated already during early PCG iterations.

 \checkmark The smallest eigenvalue $\lambda_{min}\,$ is used to estimate the spectral radius of the preconditioned matrix

 $I - D^{-1}(C^{T}B^{-1}C)$

Ritz Values - Examples

Proximity between the Ritz values and the eigenvalues

 $(\varepsilon^{i} = \max\{0.95\varepsilon^{i-1}, \min_{\varepsilon}\}, \min_{\varepsilon} = 10^{-8}, \text{ and } \varepsilon^{0} = 10^{-2})$

15

The previous estimations have been extended to consider any number $h \ge 0$ of terms in the power series preconditioner:

Proposition 2. Let $M^{-1} = \left(\sum_{i=0}^{h} (D^{-1}(C^{T}B^{-1}C))^{i}\right) D^{-1}$ be the preconditioner with h terms of the power series. And let λ_{min} be the smallest eigenvalue of the preconditioned matrix $M^{-1}S$. Then the spectral radius of $D^{-1}(C^{T}B^{-1}C)$ is

$$\rho =^{h+1} \sqrt{(1 - \lambda_{min})}$$

Dynamic update of the h terms

Start: h=0 :

- If h < 5 and
 - 1. The estimated spectral radius $(\tilde{\rho} = {}^{h+1} \sqrt{(1 \tilde{\lambda}_{min})}) > 0.9$
 - 2. The number of PCG iterations for solving the linear system reaches 0.10l, where l is the dimension of $I D^{-1}(C^T B^{-1}C)$.

h=h+1

Restart h if solution is worse $\mu < 0.001$ and $\mu_{i+1} > \mu_i$.

Numerical Experiments

					Instances Co			Cons	straints		Varia	bles	
Multicomodity flow problems (oriented)				tripart1 tripart2 tripart3 tripart4 gridgen1		2 2 3 4 1	$3294 \\ 13301 \\ 25541 \\ 38004 \\ 329831$		$33774 \\ 135941 \\ 329161 \\ 869814 \\ 985191$				
Dynamic h terms: h in [0;5]					Original: h = 0 for all iterations								
Instance		CPU (s)	it	PCG	(it)	h_0	h_max		CPU (s	5)	it	PCG (it	:)
tripart1		1,52	56	99	3	0	5		0,87		51	12	60
tripart2		7,77	73	2208		0 5			23,02		117	104	27
tripart3		56,14	108	7997		0	0 5		21,51		78	33	63
tripart4		186,7	122	5938		0 5			fail				
gridgen1		159,49	207	198	9	0	5		224,65	i i	195	39	38

Numerical Experiments

	IP_iteration	PCG_it eration	terms: h	Spectral radius
	168	Q	0	0
	160	2	0	ŏ
	170	10	0	0
	170	386	0	0
	172	161	1	0.99
	173	2	2	0.75
	174	1	2	0.15
	175	1	2	0,10
	176	1	2	0.5
	177	1	2	0.53
Gridgen 1	178	10	2	0,99
	179	1	3	0.7
	180	1	3	0,73
	181	2	3	0,84
	182	4	3	0,95
	183	1	4	0,44
	184	1	4	0,28
	185	1	4	0,51
	186	1	4	0,48
	187	2	4	0,94
	189	1	5	0,44
	190	2	5	0,81
	191	4	5	0,98

Numerical Experiments

Minimmum congestion problems				Instanc	es	Constraints Variables			es	
				M32-32 M64-64 M128-64 M128-128 M256-256 M512-64 M512-128		$2 \\ 5 \\ 11 \\ 19 \\ 71 \\ 470 \\ 79$	2449 5564 .640 9867 .891 9075 9765	$\begin{array}{r} 33533\\ 67962\\ 155742\\ 314243\\ 1139467\\ 634143\\ 1249145\end{array}$		33 62 42 43 67 43 45
Dynamic h terms: h in [0;5]				Original: h = 0 for all iterations						
Instance	C	CPU (s)	it	PCG (it)	h_0	h_max	CPU	(s) it	t	PCG (it)
M32-32		0,83	95	317	0	0	0),84	95	317
M64-64		1,92	94	178	0	0	1	,94	94	178
M128-64		6,28	100	240	0	0		6,3	100	240
M128-128		15,59	100	234	0	0	15	5,54	100	234
M256-256		198,04	121	1319	0	0	198	3,03	121	1319
M512-64		130,37	123	2676	0	0	129	9,78	123	2676
M512-128		155,38	102	123	0	0	15	5,4	102	123

Conclusions

- An adaptive selection of the number of terms in the power series preconditioner seems a good strategy to improve the performance of this preconditioner .
- Future tasks: Apply this adaptative scheme to test another classes of problems.